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A semianalytical theory of the stability of odd-harmonic square oscillation modes of a nonlinear delayed-
feedback system operating in the period-2 regime is proposed. Stability is found to be ruled by how the system
approaches or leaves plateaus. An organization of the stability domains in interrupted bands of values of the
delay is revealed.
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I. INTRODUCTION

Dynamical systems subject to delayed feedback have re-
ceived a growing interest over the past decades. They arise in
various research fields such as population dynamics[1],
physiological diseases[2], or neuron system modeling[3,4].
In optics, delayed feedback occurs as a result of the finite
speed of light, when an optical signal is allowed to propagate
over a closed path. Famous, well-studied examples of such
systems include the external-cavity semiconductor laser[5]
and the Ikeda optical ring cavity[6,7]. The latter is known, in
particular, for its ability to exhibit a manifold of multistable
temporal oscillation patterns[8]. Studies of electro-optical
bistable devices have explored the potential applicability of
this phenomenon for large-capacity optical signal storage
[9–12]. Successful realizations were reported, but also re-
vealed that the stability of the information-carrying patterns
is a very complex issue[10]. More recently, electro-optical
bistable devices have been proposed as receiver-transmitter
pairs for secure communication schemes based on chaos
synchronization[13–15]. Although primarily focused on
chaotic operation, these studies contribute to boost the
scientific community’s interest in a fundamental knowledge
of the dynamics of these systems, including the nonchaotic
regimes[16].

The present paper aims at improving our understanding of
the stability of the periodic patterns generated by electro-
optical bistable devices and exploited in information storage
experiments. In the past, fair agreement between experimen-
tal results and numerical simulations has been obtained, al-
lowing the checking of a good many theoretical predictions
[6–12,17–20]. However, a fundamental knowledge of the
mechanisms ruling stability is lacking. Even in the absence
of external influences, it is still partially unclear when and
why a particular pattern acquires or loses stability. This paper
contributes to overcome this limitation by proposing a semi-
analytical theory of the stability, in theperiod-2(P2) domain.
This term refers to an operation regime characterized by
square oscillations with a periodT slightly larger than twice
the delay.[A typical P2 output is displayed in Fig. 1(a).] The
fundamental mode shown there often coexists with its odd
harmonics[see the third harmonic in Fig. 1(b)]. These modes
can undergo successive period-doubling bifurcations, making
them precursors to the larger-period patterns usable for infor-
mation storage.

The simplest models of electro-optical bistable devices
consist of a delay-differential equation of the(dimensionless)
form

ẋstd + xstd = f„xst − r…d, s1d

where a dot means differentiation with respect to timet, r is
the delay,x represents the output signal, and the functionf
accounts for the nonlinear response of the device and may
depend on a number of controllable parameters[13–15,20].
Similar equations(or systems thereof) also arise as models
for electronic circuits[21] or neuron systems[3,4]. A well
documented model is Ikeda’s equation, for whichfszd
;pmf1+2B cossz−x0dg [19]. The analysis presented here is
carried out for the generic model(1). However, all quantita-
tive results displayed in the form of diagrams pertain to Ike-
da’s equation withB=0.5 andx0=−p /2. These values are
chosen so as to allow a direct comparison with Ref.[19]. The
equation then reduces to

ẋstd + xstd = pmf1 − sinxst − rdg, s2d

where the delayr and the pumping ratem are the only re-
maining free parameters.

II. TRANSIENT DYNAMICS

The study of delay-differential equations is challenging.
However, analogies between delayed and spatially extended
systems have been unraveled[22] and open the way to new
methods of analysis[23]. A bidimensional representation of
temporal data has been useful for the discovery of these
analogies[24]. In Fig. 2, long-lived transient oscillations of

FIG. 1. Periodic solutions of Ikeda’s equation(2) in the P2
regime form=0.6 andr =45. The horizontal axis spans one funda-
mental periodT, which is slightly larger than twice the delay.
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Eq. (2) are analyzed using such a representation. Two nu-
merical solutions of Eq.(2) with m=0.6 corresponding to
distinct initial conditions are represented in the planet vs
st mod Td, the values ofx being measured on a gray scale.
[The fundamental period Thas been first determined from
the fundamental P2 solution of Eq.(2) shown in Fig. 1(a).]
Figure 2 separates visually the fast square oscillations over a
time intervalT, measured along the horizontal axis, from the
much slower transient dynamics observable along the verti-
cal axis. The dynamics is structured as an alternance of pla-
teaus connected by slowly drifting domain walls. Figure 2(a)
features the attraction, collision, and annihilation of two
pairs of opposite walls. This leads to the establishment of a
periodic final state with only two walls per period, identifi-
able as the fundamental mode shown in Fig. 1(a). In Fig.
2(b), no such annihilation takes place as adjacent walls actu-
ally repel each other. There the final state is the third har-
monic with equispaced transitions shown in Fig. 1(b). Figure
2 thus illustrates a case of bistability between the fundamen-
tal mode and its third harmonic, by showing that both modes
are reachable from appropriate initial conditions.

Figure 3 offers an alternative representation of the same
dynamics. There, the distribution of thetransition times tk (k
integer) is plotted in the planet vs ft mod s 1

2Tdg. The tk are
defined precisely as the Poincaré times satisfying the condi-
tion xstkd=xstk− 1

2Td. Note how their distribution follows the
motion of the domain walls in Fig. 2. This suggests that the

clue to the stability of the oscillation patterns lies in the
analysis of how the distribution of the transition times over a
half period determines its own drift on a large time scale.
However, direct numerical integration of Eq.(1) can be im-
practical for this purpose, given how large the required inte-
gration time typically is, even with modern equipment. In-
deed, in the P2 regime, one must keep in mind that transient
times tend to grow exponentially as functions of the delay
[25]. This is exemplified by the ordinate scales of Figs. 2 and
3 , which give measures of the stiffness of the problem. Care
must be taken to deal with this difficulty properly, as failing
to do so could lead to incorrect interpretations of numerical
data. Numerical continuation methods could also be tricky to
put in practice, as exponentially large transient times implies
nearly marginal stability. What is required, then, is the ana-
lytical derivation from Eq.(1) of a recurrence relation for the
Poincaré timestk.

III. ANALYSIS

Consider a solutionx of Eq. (1). In the P2 regime,x
switches between two plateau valuesx0 and x1 sx0,x1d
given approximately by

x0 = fsx1d,x1 = fsx0d. s3d

Let n denote the number of such transitions per half period.
Feedback forces the solutionx to repeat itself with a plateau
inversion every half period, implying thatn is an odd num-
ber. [The fundamental mode of Fig. 1(a) and its third har-
monic in Fig. 1(b) correspond ton=1 and 3, respectively.]
Our analysis rests on the two following assumptions.

Hypothesis 1: successive transitions are well separated in
time. This means that the intervalstk− tk−1 between transi-
tions are significantly larger than the duration of a transition,
denoted 2D. This implies, in particular, that the delayr is
large compared to 2D.

Hypothesis 2: the solutionx is almost periodic with period
T. Specifically,tk− tk−n. 1

2T for all k.
We want to show that the behavior of the solutionx of Eq.

(1) during transitions plays an important role in the long-
term dynamics. Transitions are described approximately by a
pair of transition layer equations[26] as follows. Letu0std
andu1stdsolve the system

u̇0std + u0std = f„u1st + ad…, s4ad

u̇1std + u1std = f„u0st + ad…, s4bd

with conditions

u0s− `d = u1s+ `d = x0, u1s− `d = u0s+ `d = x1,

u0s0d = u1s0d. s5d

The symbola in Eqs.(4) is an unspecified constant. A solu-
tion hu0,u1j does not exist for arbitrary values ofa, so thata
must be determined, as part of the problem, so as to render
Eqs. (4) and (5) solvable. Then,u0 andu1 describe, respec-
tively, the upwards and downwards transitions. More pre-
cisely, the solutionx of Eq. (1) is well approximated by

FIG. 2. Transient solutions of Ikeda’s equation(2) in a bidimen-
sional temporal data representation(see text) for m=0.6 andr =45.
Values ofx are represented on a gray scale.

FIG. 3. Distributions of the transition times extracted from the
data of Fig. 2.
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xstd.ukst− tkd for ut− tku&D, whereuk;uk mod 2, for all k.
The upwards transition layeru0 for Ikeda’s equation(2) is
shown in Fig. 4 for two distinct values ofm. [It can be
checked that Fig. 4(b) describes well the upwards transitions
in Fig. 1, where the same value ofm is used.] Furthermore,
the relation

a =
1

2
T − r s6d

is known to hold for larger, so thata can be thought of as
the lag of the half period with respect to the delay.

In general, no explicit analytical expressions exist for the
unknownsu0std, u1std, and a of the problem(4) and (5),
which then have to be determined numerically. Useful infor-
mation about thetails of the transition layers(i.e., the
asymptotic behaviors of the transition layersu0 and u1 be-
yond or ahead of the transition) can, nevertheless, be ob-
tained from a linearized form of Eqs.(4), as follows. Substi-
tuting u0std=u0s±`d+«0 expsstd and u1std=u1s±`d
+«1 expsstd in Eqs.(4) and keeping only linear contributions
in the constants«0, «1 leads to

ss + 1d«0 = f8„u1s±`d…«1 expssad, s7ad

ss + 1d«1 = f8„u0s±`d…«0 expssad, s7bd

where the prime denotes differentiation. The ± sign deter-
mines whether the equations above are relevant beyond or
ahead of a transition. Requiring that Eqs.(7) admit nontrivial
solutions h«0,«1j yields an equation for the eigenvaluess
(which happens to be independent of the ± sign)

ss + 1d2 = l exps2sad, s8d

where l; f8sx0df8sx1d. Let s− and s+ be respectively the
eigenvalues with the greatest negative and smallest positive
real parts. They represent the exponential decay rates of the
future and past tails of the transition layers, respectively.
Specifically, one can write(compactly)

Hu0std = u0s±`d + R7fA0
± expss7tdg

u1std = u1s±`d + R7fA1
± expss7tdg J for ± t * D, s9d

where A0
±, A1

± are four constant amplitudes, and where the
shorthand notationsR7fzg representz if s7 is real andz
+z* otherwise(star denoting complex conjugation). The am-
plitudes A0

±, A1
± cannot be completely determined from the

linear analysis.

For a large enough delayr, the conditions of P2 oscilla-
tion for Eq. (1) closely match those for the discrete map
obtained by setting the left-hand side of Eq.(1) to zero[27].
In particular, one has approximatelyl=1 at the P2 oscilla-
tion threshold andl=−1 at a period-4 bifurcation. Now, an
analysis of Eq.(8) reveals that both eigenvaluess± are real if
l.0 and both have an imaginary part ifl,0. From this, we
infer that the tails start out monotonous at the P2 threshold
and become oscillatory at some point(i.e., atl=0) along the
route to period 4. The presence or absence of tail oscillations
is illustrated in Fig. 5, where the slopeuu̇0u of the upwards
transition layer is shown for Ikeda’s equation(2) for two
different values ofm. The logarithmic scale used is necessary
to reveal the absence[Fig. 5(a)] or presence[Fig. 5(b)] of
oscillations efficiently. The feature can barely be discerned
from Fig. 4 wherem0 is plotted on a linear scale for the same
values ofm. Its importance nevertheless becomes clear in the
following.

Using hypothesis 2 and the relation(6), tk− tk−n can be
written as

tk − tk−n ; r + a + dk, s10d

where thedk represent small unknown deviations of the tran-
sition times from one half period to the next. If thedk can be
determined, then they give a recurrence relation for the tran-
sition timestk, which solves our problem. The transition lay-
ersukst− tkd provide a first approximation to the solutionx of
Eq. (1) during transitions. This motivates Ansätze of the
form xstd=ukst− tkd+jkst− tkd, where thejk represent small
corrections to the transition layersuk. It is possible to derive
a system of equations for thejk and to formulate the bound-
ary conditions they have to satisfy. However, the existence of
solutions to the resulting problem is not ensured; one thus
has to impose it explicitly as conditions over its parameters.
We have found that these solvability conditions determine
the deviationsdk. The resulting equations for thedk can be
expressed in terms of the solution of an auxiliary nonauto-
nomous linear problem, as follows. Consider the system

− v̇0std + v0std = v1st − adf8„u0std…, s11ad

− v̇1std + v1std = v0st − adf8„u1std…. s11bd

We can show that, generically, a bounded solutionhv0,v1j of
these equations behaves asymptotically as

FIG. 4. Upwards transition layeru0 for Ikeda’s equation(2) with
(a) m=0.4, (b) m=0.6.

FIG. 5. Logarithm of the slopeuu̇0u of the upwards transition
layer u0 for Ikeda’s equation(2) with (a) m=0.4, (b) m=0.6.
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Hv0std = R±fB0
± exps− s±tdg

v1std = R±fB1
± exps− s±tdg J for ± t * D, s12d

whereB0
±, B1

± are some constants. Assume that the solution
hv0,v1j is normalized so that

E
−`

+`

dtfv1st − adf8„u0std…u̇0std + v0st − adf8„u1std…u̇1stdg = 1.

s13d

This normalization is chosen so as to make some expressions
below as simple as possible. Equations(11)–(13) determine
B0

± and B1
± completely. Then, a calculation reveals thedk to

be given by

dk = F−stk − tk−1d + F+stk − tk+1d, s14d

where

F±std ; R±fC± expss±tdg, s15d

C± ; ± sB0
±A1

7 + B1
±A0

7df1 − s1 + s±dag. s16d

Equations(10) and (14) together yield the sought recur-
rence relation for the transition timestk. It is then convenient
to express thetk in terms of new variables more directly
related to the bidimensional data representations of Fig. 3.
Let sk

l ; tnl+k−sr +adl, wherek=0, . . . ,n−1 andl is any inte-
ger. The variablesk

l then represents thedisplacementof the
kth transition afterl half periods. In those parts of Fig. 3
where the numbern of transitions per half period is con-
served,sl

k can be read directly as thekth abscissa correspond-
ing to ordinatet=sr +adl. Becausednl+k=sk

l −sk
l−1 is a small

quantity, the variablessk
l differ little from one value ofl to

the next. Therefore it makes sense to replace the discrete
index l with a continuous time variable:l = t / sr +ad, and to
approximate discrete differences as time derivatives:dnl+k

=sk
l −sk

l−1=sr +adṡkstd. In terms of the new variables, the sys-
tem formed by Eqs.(10) and (14) becomes

sr + adṡk = F−ssk − sk−1d + F+ssk − sk+1d,

k = 0, . . . ,n − 1, s17d

where we have defineds−1;sn−1−sr +ad andsn;s0+sr +ad.

IV. RESULTS

Equations(17) form a finite set of ordinary differential
equations. They relate the slow drift of the transitions to the
time intervals separating them. Stable P2 solutions of Eq.(1)
correspond to stable equilibria of Eqs.(17). The termsF± in
the right-hand side can be interpreted as accounting for ef-
fective interactions between adjacent domain walls, that lead
to the formation of dissipative structures as depicted by Fig.
2. The sign and magnitude of the interactions depend on the
wall separation. The description of the evolution of the os-
cillation pattern offered by Eqs.(17) bears a high similarity
with the dynamics of a spatial distribution of pointlike par-
ticles. From Eq.(15), we see that the interactionsF± de-

crease exponentially(at ratesus±u) with wall separation. The
decrease is either monotonous or oscillatory, in direct rela-
tion to the shapes of the transition layer tails. It is possible to
prove from Eqs.(4) and(11) that, as long as the tails remain
monotonous, the interaction termsF± are always attractive.
In that case, a stability analysis of Eqs.(17) reveals that any
solution with n.1 is unstable. The walls thus tend to col-
lapse and annihilate by pairs until there remains only one
wall per half period. This implies that the only possible
stable pattern is the fundamental mode if the front tails are
monotonous. Such a dynamics is comparable to that of at-
tractor particles constrained to move on a circle: if there are
more than one particle, then they will collapse by pairs until
there is only one particle left. On the other hand, if the tran-
sition layer tails oscillate, then so do the interaction termsF±
as a function of wall separation. In that case, multiple stable
equilibria, corresponding to different values ofn, are pos-
sible. In conclusion,in the absence of external perturbations,
the stability of the higher harmonicssn.1d is determined by
the asymptotic behavior of the system beyond or ahead of
transitions.

In order to make quantitative predictions, the constantsa,
s±, andC± appearing in Eqs.(14)–(16) have to be evaluated.
This requires the knowledge of solutions to the problems(4)
and (11). Their numerical computation is easy enough(if
tackled properly) and free from the difficulty of dealing with
exponentially long transients. As a test of the validity of the
wall drift equations(17), we have undertaken to reproduce
the transition time distributions plotted in Fig. 3. The param-
etersa, s±, andC± have been evaluated for Ikeda’s equation
(2) for m=0.6, and Eqs.(17) have been integrated forn=3,
r =45, and suitable initial conditions. Then, diagrams have
been constructed with timet appearing as the ordinate and
s0std, s1std, and s2std plotted along the horizontal axis. The
resulting curves, shown in Fig. 6, are nearly indistinguish-
able from the corresponding plots in Fig. 3, except in the
vicinity of the front pair annihilation in Fig. 3(a) and beyond,
where Eqs.(17) lose their validity due to the violation of
Hypothesis 1. The nearly P2 dynamics of the original system
(2) is thus very accurately described by the simplified equa-
tions (17), whose integration is an incomparably less stiff
problem.

FIG. 6. Solutionshs0std ,s1std ,s2stdj of Eqs. (17) for n=3 and
two different initial conditions. Parameter values in Eqs.(17) have
been computed so as to correspond to Ikeda’s equation(2) for m
=0.6 andr =45. Compare with Fig. 3.
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We now use Eqs.(17) to analyze the stability of the P2
oscillation modes of Eq.(2) with equispaced transitions:sk
−sk−1=sr +ad /n for k=0, . . . ,n−1. For Ikeda’s equation(2),
the P2 oscillation thresholdm2 and the period-4 biifurcation
m4 are given, for larger, by m2=0.374 andm4=0.626. Fur-
thermore, the change from monotonous tails to oscillatory
tails occurs atm̄2=0.5. Figure 7 shows the stability bound-
aries of the first few harmonic modes in them vs r plane for
m2,m,m4. The stability of the higher harmonicssn.1d
has been determined from Eqs.(17) for a sample of values of
m betweenm̄2 andm4. The results were interpolated to obtain
the smooth curves shown in the diagram. The stability
boundary of the fundamental moden=1 was determined
from Eq. (2) linearized about the steady state. Figure 7 can
be directly compared to Fig. 4 in Ref.[19]. Although both
figures agree qualitatively in their overlapping parts, the lat-
ter tends to overestimate the stability domains of the higher
harmonics. Discrepancies of this nature are not unexpected
in view of the very long transient times in the system. Note,
in particular, that Ref.[19] predicts asymptotes atm=m2 for
the stability boundaries of all modes, whereas Fig. 7 predicts
an asymptote atm=m2 for n=1 and asymptotes atm=m̄2 for
the higher harmonics.

Note also from Fig. 7 that the stability domain for fixedm
or a specific harmonicn is structured in disconnectedbands
of values ofr. Each band is bounded to the left by a num-
bered solid curve and to the right by an identically numbered
dashed curve. The band structure in Fig. 7 can be best ob-
served for the third harmonic, whose first two stability bands
are displayed. From Eqs.(17), we compute that the size and
separation of the stability bands for thenth harmonic is given
approximately bynp / Imss−d, which corresponds to the du-
ration of n half cycles in the oscillations of the transition
layers’ future tails.[Compare the band sizes atm=0.6 in Fig.
7 with the size of the humps in the right part of Fig. 5(b),

which represent successive half cycles in the future tail.]
This latter result can be established without reference to par-
ticular values of the parameters in Eqs.(17). Consequently, it
is not specific to Ikeda’s equation(2), but is generic for equa-
tions of the form Eq.(1). The identification and quantitative
characterization of this band structure is an important
achievement as it underlines the necessity of choosing the
delay properly in order to stabilize a given harmonic. Even if
the system is adequately insulated from external influences,
an inappropriate delay can cause an instability.

The regular patterns with equispaced transitions, illus-
trated in Fig. 1, are not the only possible stable solutions.
Figure 8 shows an example of a stable periodic solution of
Ikeda’s equation(2) with irregularly sized plateaus. Again,
its stability has been established using the front drift equa-
tions (17). To our knowledge, the ability of Ikeda’s equation
to generate irregular patterns in the P2 regime has never been
predicted before.

V. CONCLUSIONS

In this paper, we have identified the factors determining
the stability of the square oscillation modes of a delayed-
feedback system isolated from external influences. These
factors have been tracked down to the asymptotic behavior
of the system beyond or ahead of transitions. The domain of
stability of each mode was found to be organized in bands of
values of the delay. The size of these bands has been related
to the duration of the damped oscillation cycle as the system
approaches a plateau. Moreover, the existence of P2 patterns
with irregularly sized plateaus has been predicted. The prin-
ciple of the analysis is fairly easily extensible for the taking
into account of external perturbations. The strategy for its
extension to the period-4 regime and beyond remains to be
investigated.
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FIG. 7. Stability boundaries of the regular oscillation modes of
Ikeda’s equation(2), in the P2 regime. Numbers indicate the ordern
of the harmonic undergoing a stability change. The stability do-
mains are located to the right(respectively left) of solid (respec-
tively dashed) curves.

FIG. 8. A stable periodic solution of Ikeda’s equation(2) for
m=0.6 andr =80. In contrast to the P2 patterns shown in Fig. 1, this
one has irregularly sized plateaus. The horizontal axis spans one
period.
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